- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Shekouhi, Niloufar (2)
-
Goel, Vijay K (1)
-
Goel, Vijay K. (1)
-
Theologis, Alekos A (1)
-
Theologis, Alekos A. (1)
-
Vosoughi, Ardalan S (1)
-
Vosoughi, Ardalan S. (1)
-
Zavatsky, Joseph M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PurposeTo assess biomechanics of a lumbar PSO stabilized with different multi-rod constructs (4-, 5-, 6-rods) using satellite and accessory rods. MethodsA validated spinopelvic finite element model with a L3 PSO was used to evaluate the following constructs: 2 primary rods T10-pelvis (“Control”), two satellite rods (4-rod), two satellite rods + one accessory rod (5-rod), or two satellite rods + two accessory rods (6-rod). Data recorded included: ROM T10-S1 and L2-L4, von Mises stresses on primary, satellite, and accessory rods, factor of safety yield stress, and force across the PSO surfaces. Percent differences relative to Control were calculated. ResultsCompared to Control, 4-rods increased PSO flexion and extension. Lower PSO ROMs were observed for 5- and 6-rods compared to 4-rods. However, 4-rod (348.6 N) and 5-rod (343.2 N) showed higher PSO forces than 2-rods (336 N) and 6-rods had lower PSO forces (324.2 N). 5- and 6-rods led to the lowest rod von Mises stresses across the PSO. 6-rod had the maximum factor of safety on the primary rods. ConclusionsIn this finite element analysis, 4-rods reduced stresses on primary rods across a lumbar PSO. Although increased rigidity afforded by 5- and 6-rods decreased rod stresses, it resulted in less load transfer to the anterior vertebral column (particularly for 6-rod), which may not be favorable for the healing of the anterior column. A balance between the construct’s rigidity and anterior load sharing is essential.more » « less
-
Shekouhi, Niloufar; Vosoughi, Ardalan S; Zavatsky, Joseph M; Goel, Vijay K; Theologis, Alekos A (, European Spine Journal)Abstract PurposeMulti-rod constructs are used commonly to stabilize pedicle subtraction osteotomies (PSO). This study aimed to evaluate biomechanical properties of different satellite rod configurations and effects of screw-type spanning a PSO. MethodsA validated 3D spinopelvic finite element model with a L3 PSO (30°) was used to evaluate 5 models: (1) Control (T10–pelvis + 2 rods); (2) lateral satellite rods connected via offsets to monoaxial screws (LatSat-Mono) or (3) polyaxial screws (LatSat-Poly); (4) in-line satellite rods connected to monoaxial screws (InSat-Mono) or (4) polyaxial screws (InSat-Poly). Global and PSO range of motions (ROM) were recorded. Rods’ von Mises stresses and PSO forces were recorded and the percent differences from Control were calculated. ResultsAll satellite rods (save InSat-Mono) increased PSO ROM and decreased primary rods’ von Mises stresses at the PSO. Lateral rods increased PSO forces (LatSat-Mono:347.1 N; LatSat-Poly:348.6 N; Control:336 N) and had relatively lower stresses, while in-line rods decreased PSO forces (InSat-Mono:280.1 N; InSat-Poly:330.7 N) and had relatively higher stresses. Relative to polyaxial screws, monoaxial screws further decreased PSO ROM, increased satellite rods’ stresses, and decreased PSO forces for in-line rods, but did not change PSO forces for lateral rods. ConclusionMulti-rod constructs using in-line and lateral satellite rods across a PSO reduced primary rods' stresses. Subtle differences in biomechanics suggest lateral satellite rods, irrespective of screw type, increase PSO forces and lower rod stresses compared to in-line satellite rods, which had a high degree of posterior instrumentation stress shielding and lower PSO forces. Clinical studies are warranted to determine if these findings influence clinical outcomes.more » « less
An official website of the United States government
